An investigation of dendritic delay in octopus cells of the mammalian cochlear nucleus

نویسندگان

  • Martin J. Spencer
  • David B. Grayden
  • Ian C. Bruce
  • Hamish Meffin
  • Anthony N. Burkitt
چکیده

Octopus cells, located in the mammalian auditory brainstem, receive their excitatory synaptic input exclusively from auditory nerve fibers (ANFs). They respond with accurately timed spikes but are broadly tuned for sound frequency. Since the representation of information in the auditory nerve is well understood, it is possible to pose a number of questions about the relationship between the intrinsic electrophysiology, dendritic morphology, synaptic connectivity, and the ultimate functional role of octopus cells in the brainstem. This study employed a multi-compartmental Hodgkin-Huxley model to determine whether dendritic delay in octopus cells improves synaptic input coincidence detection in octopus cells by compensating for the cochlear traveling wave delay. The propagation time of post-synaptic potentials from synapse to soma was investigated. We found that the total dendritic delay was approximately 0.275 ms. It was observed that low-threshold potassium channels in the dendrites reduce the amplitude dependence of the dendritic delay of post-synaptic potentials. As our hypothesis predicted, the model was most sensitive to acoustic onset events, such as the glottal pulses in speech when the synaptic inputs were arranged such that the model's dendritic delay compensated for the cochlear traveling wave delay across the ANFs. The range of sound frequency input from ANFs was also investigated. The results suggested that input to octopus cells is dominated by high frequency ANFs.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Detection of synchrony in the activity of auditory nerve fibers by octopus cells of the mammalian cochlear nucleus.

The anatomical and biophysical specializations of octopus cells allow them to detect the coincident firing of groups of auditory nerve fibers and to convey the precise timing of that coincidence to their targets. Octopus cells occupy a sharply defined region of the most caudal and dorsal part of the mammalian ventral cochlear nucleus. The dendrites of octopus cells cross the bundle of auditory ...

متن کامل

Temperature affects voltage-sensitive conductances differentially in octopus cells of the mammalian cochlear nucleus.

Temperature is an important physiological variable the influence of which on macroscopic electrophysiological measurements in slices is not well documented. We show that each of three voltage-sensitive conductances of octopus cells of the mammalian ventral cochlear nucleus (VCN) is affected differently by changes in temperature. As expected, the kinetics of the currents were faster at higher th...

متن کامل

Role of intrinsic conductances underlying responses to transients in octopus cells of the cochlear nucleus.

Recognition of acoustic patterns in natural sounds depends on the transmission of temporal information. Octopus cells of the mammalian ventral cochlear nucleus form a pathway that encodes the timing of firing of groups of auditory nerve fibers with exceptional precision. Whole-cell patch recordings from octopus cells were used to examine how the brevity and precision of firing are shaped by int...

متن کامل

Generating synchrony from the asynchronous: compensation for cochlear traveling wave delays by the dendrites of individual brainstem neurons.

Broadband transient sounds, such as clicks and consonants, activate a traveling wave in the cochlea. This wave evokes firing in auditory nerve fibers that are tuned to high frequencies several milliseconds earlier than in fibers tuned to low frequencies. Despite this substantial traveling wave delay, octopus cells in the brainstem receive broadband input and respond to clicks with submillisecon...

متن کامل

Octopus cells of the mammalian ventral cochlear nucleus sense the rate of depolarization.

Whole cell patch recordings in slices show that the probability of firing of action potentials in octopus cells of the ventral cochlear nucleus depends on the dynamic properties of depolarization. Octopus cells fired only when the rate of rise of a depolarization exceeded a threshold value that varied between 5 and 15 mV/ms among cells. The threshold rate of rise was independent of whether depo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2012